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A Note on the Computation of Diffuse Reflection Functions 
for Spherical Shells 

It is shown that recent computational investigations of Bellman ef al. on the diffuse 
reflection function for a spherical shell are invalid. The system of equations for the 
total reflection function considered by them admits two solutions, and the character of 
the numerical methods employed was such as to select the spurious solution. This solu- 
tion was incorrectly identified with the diffuse reflection function. 

1. INTRODUCTION 

The method of invariant imbedding, which has been extensively applied to 
problems of radiative transfer in plane parallel media, has recently been extended 
to media with spherical symmetry [l-5]. One of the principal objects of this method 
is to determine the diffuse reflection function, which relates the incident and 
diffusely emergent intensities on the outer boundary of the medium. Bellman et al. 
16, 71 have presented numerical results for the diffuse reflection function for a 
spherical shell consisting of an isotropically scattering sphere with a totally 
absorbing spherical core. The purpose of this paper is to show that the methods 
used by them are invalid, because the system of equations they have chosen does 
not have a unique solution and their computational procedures pick out the 
spurious solution. 

In particular, the system of equations employed by them refers to the totaf 
reflection function rather than to the diffuse reflection function. This function 
consists of the well-behaved diffuse part plus a singular direct part, which contains 
a generalized function of Dirac type. It will be shown that this system also admits 
another solution, which is well-behaved, and it is this solution that is found 
computationally. This well-behaved solution differs in general from the desired 
diffuse part of the singular solution, but was incorrectly identified as such in [6,7]. 

2. THE TOTAL AND D~FFWSE REFLECTION FUNCTIONS FOR A SPHERE 

The notation of Bellman, Kagiwada, and Kalaba [7] will be used with minor 
extensions. The total reflection function S(z, V, u) is defined so that the incident 
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and emergent intensities on the outer boundary of the sphere of radius z are 
related by 

Z(z, v) = & 1: S(z, v, 24) Z(z, -u) du. (2.1) 

Here I(z, v) is the specific intensity of radiation at radius z making an angle of 
cosine Y with the radius vector. For the case considered in [7] of an isotropically 
scattering spherical shell with a totally absorbing core of radius Q, the system 
satisfied by S is 

g+!g!g+!Lg -~s+u(~+$s 

= uX[l +;~~s(z,v,U’)~][l +;/;S(z,v~,U)$], z >a, 

S(ff, v, 24) = 0. (2.2) 

This equation differs slightly from that of [7] in that the scattering coefficient cr 
appears explicitly, whereas there it was taken as unity. Also a typographical error 
in the last integral has been corrected. 

In dealing with this problem it is convenient to separate emergent intensities 
into a direct part that has suffered no acts of scattering and the remaining diffuse 
part. The direct part emergent at radius z and at v > 0 is 

Z(z, -v) e--20Z~H(Yc - v), (2.3) 

where H denotes the unit Heaviside function, which is unity for positive values 
of the argument and vanishes otherwise. The quantity vv, is a critical direction 
cosine defined by vC = [l - (a/z) ] 2 l12. This follows from simple geometrical 
considerations (see Fig. 1). Any incident ray with direction cosine (-v) such that 
v > v, will intercept the absorbing core and will not contribute a direct part to 
the emergent intensities, while for v < v, the ray contributes to the direct part 
emergent at direction cosine (+v), but is reduced by the attenuation factor 
exp[-2uzv] due to scattering suffered along the path of length 2zv. 

A diffuse reflection function s(z, v, U) may now be defined by removing this 
direct part: 

Z(z, v) = e-20zvH(vc - v) Z(z, -v) + & /: S(z, v, u) Z(z, -u) du. (2.4) 

It follows that 

S(z, v, u) = qz, Y, u) + 2v@~~“H(vo - v) S(v - u), (2.5) 

where 6 denotes the Dirac a-function. The diffuse reflection function is an ordinary 
function, so that the total reflection function is a generalized function with a 
S-function singularity. 
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U>U, 

FIG. 1. Geometry of the direct rays. For Y > yO the ray intercepts the absorbing core. For 
Y < v,, the ray eventually emerges, attenuated, from the scattering region and contributes to the 
total reflection function. 

The system satisfied by the diffuse reflection function s is 

~+&?z+&?g -ggs+*(;+;,s 

= ah 1 + e--lOzv [ H(v, - v) + ; ,:S(z, v, 24’) +] 

- lfe- [ 2~ZUH(vo - 24) + ; ,: qz, v’, 2.4) +&I, z > a, 

S(a, v, u) = 0. (2.6) 

This result, in different notation and variables, was first obtained by Bailey [4]. 
It may also be derived by direct substitution of (2.5) into (2.2), but the details of 
this derivation are lengthy and will not be given here. 

3. NONUNIQUENESS OF THE SYSTEM (2.2) AND ITS COMPUTATIONAL IMPLICATIONS 

The system (2.2) for the total reflection function does not determine a unique 
solution. This is easily shown in the special case of no absorption, u = 0; there are 
then two solutions 

S’l’ = 6(u - v) H(vc - v) (3.1) 

S’S) = 0. (3.2) 
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Solution S(r) is the desired solution, describing the unattenuated passage of that 
radiation which does not intercept the core. Solution P) is a second, nonsingular 
solution. 

In general when (T # 0, there will always be a nonsingular solution to (2.2) 
in addition to the desired singular one. This nonsingular solution may be 
determined, for example, by a power series expansion in the parameter (z - ~)/a. 
This is essentially an expansion about the plane parallel case, for which singular 
solutions are absent, since any ray incident at a surface can never emerge again 
from that surface. The analytic nature of the expansion assures that the solutions 
to the spherical case so generated are also nonsingular. Also, the nonsingular 
solutions may be found by any numerical method involving polynomial or other 
smooth representations of S, which by their very nature exclude singular solutions. 
Both these methods were employed in [7], and it must be concluded that the 
numerical solutions found there are the nonsingular solutions of (2.2). 

The crucial question to be considered is the identification of these nonsingular 
solutions. In the case u = 0 the diffuse reflection function vanishes, and the 
nonsingular solution also vanishes. This suggests that the nonsingular solution 
may simply be the diffuse reflection function for all values of U. Indeed this 
identification has apparently been made in [6, 71. However, it may be shown that 
this is not the case. For if it were true it would imply that the same function S = S 
satisfies both Eqs. (2.2) and (2.6). This would mean that the right-hand sides of 
these equations are equal; but this cannot be true for all values of v and u when 
oh # 0. For example, when v = u < vc , there should be the identity 

where 
(3.3) 

x = 1 + ; /‘S(z, v, u’) $ . 
0 

(3.4) 

But the exponential term is positive, as is X, since S is nonnegative; therefore, 

x + e-20z” > x > 0 (3.5) 

and the square of this inequality violates (3.3). 
It must be concluded that the numerical methods presented in [6, 71 for finding 

the diffuse reflection function are invalid. 

4. DISCUSSION 

The numerical results presented in [6, 71 may actually be correct to graphical 
accuracy, because the cases treated there are not very severe. The maximum ratio 
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of shell thickness to core radius considered was 3150, and the optical thickness 
of the shell was 3. The additional exponential terms which distinguish (2.6) from 
(2.2) exceed 10-a only for a very small range of Y, (0 < v < 0.02), so that the 
results are probably accurate to within a few percent. 

For future computations on this problem the system (2.6) would seem to be 
suitable, as the solution is an ordinary function, and presumably similar difficulties 
with uniqueness will not arise. Care should be taken in setting up representations 
of L? that some account be taken of the discontinuities which occur at values of v 
and u equal to v, . However, even if one can avoid the difficulties of the system (2.2) 
by treating (2.6) instead, this is, to quote Bailey and Wing [4], “of only slight 
consolation if one has put considerable effort and perhaps large amounts of 
computer time into the study of an originally incorrect formulation.” 
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